C.U.SHAH UNIVERSITY

Summer Examination-2016

Subject Name: Engineering Mathematics-II

Subject Code: 4TE02EMT1

Branch: B.Tech(All) Semester: 2 Date: 09/05/2016 Time: 10:30 to 1:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) A square matrix A is called symmetric matrix if
- (a) $A^{T} = -A$ (b) $A^{2} = A$ (c) $A^{T} = A$ (d) $A^{2} = I$
- The determinant of the matrix $\begin{bmatrix} 1 & 5 & 3 \\ 0 & -2 & 4 \\ 0 & 0 & 3 \end{bmatrix}$ is
 - (a) 1
- (b) 2
- (c) 6 (d) 6
- c) A $n \times n$ Non-Homogeneous system of equations AX = B is given. If $\rho(A) = \rho(A:B) < n$ then the system has
 - (a) No solutions

(b) Unique solutions

(c) Infinite solution

- (d) None of these
- **d)** The sum of the Eigen values of the matrix $A = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$ is 0 0 3
 - (a) 1
- (b) 2
- (c) 6 (d) 6
- e) The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \end{bmatrix}$ is
 - (a) 1

- (b) 2 (c) 3 (d) 0
- - (a) 1
- (b) 6 (c) 4
- (d) 8

g)
$$\int_{0}^{1} \int_{0}^{\sqrt{x}} dy \ dx =$$

- (a) $\frac{1}{2}$ (b) $\frac{2}{3}$ (c) 0 (d) y

h)
$$\int_{-\pi/2}^{\pi/2} \sin^9 x \ dx =$$

- (a) 0 (b) 1 (c) $\frac{\pi}{2}$ (d) $\frac{1}{2}$

i) The value of $\int_{-\pi}^{\pi} \sin mx \sin nx \, dx$ for $m \neq \pm n$ is

- (a) 2π (b) π (c) $\frac{\pi}{2}$
 - (d) 0

j) $\int_{1}^{\infty} \frac{1}{x^2} dx$ is

these

- (a) Converges (b) Diverges (c) Oscillatory
- (d) None of

k) The order of the differential equation $\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^3\right]^{\frac{2}{3}}$ is

- (a) 1
- (b) 2
- (c) 3
- (d) 6

1) The equation P(x, y) dx - Q(x, y) dy = 0 is exact if

- (a) $P_x = Q_y$ (b) $P_y = Q_x$ (c) $P_x = -Q_y$ (d) $P_y = -Q_x$

m) A vector \vec{F} is said to be solenoidal if

- (a) $\nabla \times \vec{F} = 0$ (b) $\nabla \cdot \vec{F} = 0$ (c) $\nabla \times (\nabla \cdot \vec{F}) = 0$ (d) None of theser

n) If r = xi + yj + zk then div r is

- (a) 0
- (b) r
- (c) 3
- (d) r

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a) Find the volume common to the cylinder $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$. (05)

b) Evaluate: $\int_{0}^{\infty} x \sin^8 x \cos^6 x \ dx$ (05)

c) Solve: $\frac{dy}{dx} - \frac{3y}{x} = x^3$, y(1) = 4(04)

Q-3 Attempt all questions

a) Find the inverse of the matrix
$$A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$
 by using determinant (05)

method.

b) Solve the following system of equations by Cramer's rule: (05) x+y+z=6; x+2y+3z=14; x+4y+9z=36

c) Reduce the matrix
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 4 & 5 & 6 & 7 \\ 11 & 12 & 13 & 14 \end{bmatrix}$$
 to the normal form and find its rank. (04)

Q-4 Attempt all questions

a) Find the inverse of the following matrix by using elementary transformation (05)

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

(05)

b) Obtain Reduced row echelon form of the following matrix:

$$A = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 3 & 3 & 2 \\ 3 & 4 & -1 & 3 \\ 6 & 10 & 4 & 6 \end{bmatrix}$$

c) Solve the system of equation x+2y-z=3; 3x-y+2z=1; 2x-2y+3z=2; x-y+z=-1 (04)

Q-5 Attempt all questions

a) Evaluate:
$$\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y+z} dz \, dy \, dx$$
 (05)

b) Solve:
$$\frac{dy}{dx} + x \sin 2y = x^2 \cos^2 y$$
 (05)

c) Evaluate $\int_C \overline{F} d\overline{r}$ along the parabola $y^2 = x$ between the points (0,0) and where $\overline{F} = x^2 \hat{i} + xy \hat{j}$.

Q-6 Attempt all questions

- a) Find the eigenvalues & eigenvectors of a matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. (05)
- **b**) Show that $\overline{F} = (y^2 z^2 + 3yz 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy 2xz + 2z)\hat{k}$ is both solenoidal and irrotational. (05)
- c) Define: Gradient and find $\nabla \phi$ at (1, -2, 1), if $\phi = 3x^2y y^3z^2$. (04)

Q-7 Attempt all questions

- a) Change the order of integration and evaluate $\int_{0}^{a} \int_{\frac{x}{a}}^{\sqrt{\frac{x}{a}}} (x^{2} + y^{2}) dx dy.$ (05)
- **b)** Find the area bounded by the parabola $y^2 = 4x$ and the line 2x 3y + 4 = 0. (05)
- c) Solve: $2xy \, dy + (x^2 + y^2 + 1) \, dx = 0$ (04)

Q-8 Attempt all questions

- a) State and verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$. (07)
- **b)** Verify Green's theorem for $\iint_C \left[\left(x^2 2xy \right) dx + \left(x^2y + 3 \right) dy \right]$ where *C* is the boundary of the region bounded by the parabola $x^2 = y$ and the line x = y.

